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Performance of Two-Samples Pseudo-Median Procedure 
(Prestasi Prosedur Pseudo-Median Dua Sampel)
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ABSTRACT

This article investigates the performance of two-sample pseudo-median based procedure in testing differences between 
groups. The procedure is a modification of the one-sample Wilcoxon procedure using the pseudo-median of differences 
between group values as the central measure of location. The test was conducted on two groups with moderate sample 
sizes of symmetric and asymmetric distributions. The performance of the procedure was measured in terms of Type I error 
and power rates computed via Monte Carlo methods. The performance of the procedure was compared against the t-test 
and Mann-Whitney-Wilcoxon test. The findings from this study revealed that the pseudo-median procedure performed very 
well in controlling Type I error rates close to the nominal value. The pseudo-median procedure outperformed the Mann-
Whitney-Wilcoxon test and is comparable to the t-test in controlling Type I error and maintaining adequate power. 
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ABSTRAK

Artikel ini mengkaji prestasi prosedur berasaskan pseudo-median dua sampel dalam menguji perbezaan di antara 
kumpulan. Prosedur ini terhasil melalui pengubahsuaian prosedur Wilcoxon satu sampel menggunakan pseudo-median 
semua perbezaan nilai antara kumpulan sebagai ukuran memusat lokasi. Ujian ini dilakukan ke atas dua kumpulan 
dengan saiz sampel sederhana daripada taburan simetri dan tidak simetri. Prestasi prosedur ini diukur berasaskan 
Ralat Jenis I dan kadar kuasa yang diperoleh melalui kaedah Monte Carlo. Prestasi prosedur ini dibandingkan dengan 
ujian-t dan ujian Mann-Whitney-Wilcoxon. Dapatan kajian menunjukkan bahawa prosedur pseudo-median mempunyai 
prestasi yang sangat baik dalam mengawal kadar Ralat Jenis I hampir kepada aras nominal. Prosedur pseudo-median 
mengatasi ujian Mann-Whitney-Wilcoxon dan setanding dengan ujian-t untuk mengawal ralat jenis I dan mengekalkan 
kuasa yang mencukupi. 

Kata kunci: Kuasa; pseudo-median; Ralat Jenis I; simulasi Monte Carlo

INTRODUCTION

The conventional procedures of comparing two groups 
such as Student’s t-test are usually restricted by the 
assumptions of normality and homogeneity of variances. 
However, in the real world these assumptions are not 
always fulfilled. It is well known that the Student’s 
t-test can become seriously biased when homogeneity of 
variance assumption is not satisfied, particularly when the 
design is unbalanced (Maxwell & Delaney 2004). Over 
the years, many procedures were developed to handle the 
violation of these assumptions. Nonparametric procedure 
such as Mann-Whitney-Wilcoxon is a viable alternative 
that can be used when the distribution is not normal, while 
Welch’s t-test (Welch 1938) is an example of a procedure 
that was developed to handle the problem of unequal 
variances. However, each of these methods specializes 
on a specific violation only. When multiple problems such 
as non-normality, variance heterogeneity and unbalanced 
sizes occur simultaneously, the Type I error will inflate 
(Keselman et al. 1995; Lix & Keselman 1998). Because 
of this, the development of new methods for comparing 

two groups and locating the differences in the one-way 
independent groups design require serious attention and 
remains a very active area of study.
	 In this study, a pseudo-median based procedure was 
used in testing the equality of central tendency measures. 
This procedure was the modification of the one-sample 
nonparametric Wilcoxon procedure using the pseudo-
median of differences between group values as the central 
measure of location. As stated in Hoyland (1965), the 
pseudo-medians of a distribution F is defined as the median 
of the distribution of (X1 + X2)/2 where X1 and X2 are 
independently and identically distributed according to F. 
Hollander and Wolfe (1999) noted that the pseudo-median 
of a distribution F is the median of (Z1 + Z2)/2, where Z1 and  
Z2  are independent, each with the same distribution F.
	 The pseudo-median is a location parameter and its 
value need to be estimated. The estimation was done using 
the Hodges-Lehmann estimator (Hollander & Wolfe 1999). 
This study investigated the performance of the pseudo-
median procedure in terms of controlling Type I error 
rates and maintaining adequate power. The performance 
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was then compared with the parametric and nonparametric 
counterparts i.e. the t-test and Mann-Whitney-Wilcoxon 
test, respectively.

PSEUDO-MEDIAN PROCEDURE

The pseudo-median procedure is the modification of the 
one-sample nonparametric Wilcoxon procedure with the 
incorporation of pseudo-median of differences between 
group values as the statistic of interest in a two group 
setting. In this procedure, let X1 = (X11, X12, …, X1n)  and 
X2 = (X21, X22, …, X2m) be samples from distributions 
F1 and F2, respectively. Let the differences between 
the observations from both samples be Dij = X1i – X2j, i 
= 1,2,…,n and j = 1,2,…,m. The absolute value of the 
differences is given by  and  denotes the rank of 

. The indicator function is defined as (1): 
							     

	 	 (1)

The Wilcoxon statistic is defined as:
								      
	 	 (2)

	 The Hodges-Lehmann estimator of the pseudo-median 
given in (3) was used to estimate the pseudo-median value 
where i ≠ í and j ≠ j́. 

	 θ̂  = median 

	 = median 	 (3)

	 The modification of the Wilcoxon procedure was 
performed by adding the pseudo-median value to all 
observations in the second sample. A bootstrap procedure 
was employed to test the hypothesis. 

DESIGN SPECIFICATIONS

In evaluating the performance of the test procedures, 
four variables were considered under several different 
scenarios or conditions. They were (1) sample sizes, (2) 
type of distribution – symmetric or asymmetric, (3) group 
variances and (4) pairing of unequal sample sizes and 
unequal variances. We used equal sample sizes (20, 20) 
and unequal sample sizes (15, 25) with total sample sizes 
of the two groups being N = 40. We chose this sample 
sizes because other researchers have found them to be 
generally sufficient to provide reasonably effective Type 
I error control (Wilcox 1994).
	 For symmetric distribution, we chose Beta 
(0.5, 0.5) with kurtosis of -1.5. Meanwhile, for 
asymmetric distribution, we chose one Fleishman (1978) 
transformation of the standard normal distribution with 

skewness of 0.5 and kurtosis of -0.5. Both distributions 
are chosen to represent platykurtic distribution. Normal 
distribution was used as the basis of comparison. For the 
study on other type of distributions, refer to Ahad et al. 
(2009, 2011).
	 In terms of group variances, the ratios of 1:1, 1:16 and 
1:36 were used in this study. These ratios were chosen so 
that the performance of the test procedures under equal 
and unequal variances can be investigated. The 1:36 ratio 
was chosen as it reflects extreme variance heterogeneity 
under which the efficacies of the tests should be examined 
(Alexander & Govern 1994; Keselman et al. 2007; Othman 
et al. 2004). 
	 The pairings of unequal sample sizes with unequal 
variances might produce different effects on the Type I 
error and power rates of many test statistics (Cribbie & 
Keselman 2003). The two types of pairing to be evaluated 
are positive and negative pairings. Positive and negative 
pairings commonly resulted in conservative and liberal 
Type I error, respectively (Keselman et al. 2007; Othman 
et al. 2004; Syed Yahaya et al. 2006).
	 This study was based on simulated data. The 
simulation was carried out using the random-number-
generating function in SAS and the simulation program was 
written in SAS/IML (SAS 2006). In terms of data generation, 
pseudo-random normal variates were generated by 
employing the SAS generator RANDGEN (SAS 2006). This 
involved the straight forward usage of the (RANDGEN(Y, 
‘NORMAL’)) to generate normal variates with means equals 
to zero and standard deviation equals to one. Data for Beta 
(0.5, 0.5) distribution was generated using the RANDGEN 
subroutine with the beta distribution option, (RANDGEN(Y, 
‘BETA’,0.5,0.5)). 
	 Fleishman distribution was obtained via the Fleishman 
(1978) power transformation. This transformation is of 
the form Y = a + bZ + cZ2 + dZ3  where Z is a standard 
normal variate. Fleishman provided a table of values for 
the coefficients, b, c, and d in Fleishman (1978) which 
enables one to transform the standard normal distribution 
into a non-normal distributions, also of mean zero and 
variance one. The extra coefficient a is easily obtained 
through the relation a = -c, that was a direct result of 
constraining E(Y) = 0. A set of coefficients (b, c, d) which 
is (1.1478, 0.1202, -0.0575) were picked from Fleishman 
(1978) to transform the Z values to produce Fleishman 
distribution.
	 The effect size or the shift parameter used in this study 
to obtain power rates was computed based on the common 
language (CL) statistic proposed by McGraw and Wong 
(1992) and A from Vargha and Delaney (2000). The shift 
parameter varies from 0.2 to 2.0 in increments of 0.2. For 
each condition examined, 5000 data sets were simulated. 
The nominal level of significance was set at α = 0.05. 

MONTE CARLO ALGORITHM

The Monte-Carlo method for getting the Type I error 
rates for all procedures is given as Algorithm 1. Bootstrap 
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p-value of the pseudo-median procedure is given as 
Algorithm 2.

Algorithm 1
1.	 Initialize a variable, count = 0.
2.	 Generate two samples data (X1 and X2) based on design 

specification to reflect the null hypothesis.
3.	 Perform the hypothesis test based on the generated 

data at the predetermined significance level (α = 
0.05). 

4.	 Compute and collect the corresponding p-values.
5.	 If p-value ≤ 0.05, then increase count by one (count 

= count + 1).
6.	 Repeat Step 2 to Step 5 for 5000 times.
7.	 Calculate the average Type I error rates by dividing 

count by 5000. 

Algorithm 2
1.	 Based on the two samples, find W statistic and estimate 

the pseudo-median, (θ̂ ).
2.	 Add θ̂  to all observations in the second sample.
3.	 Calculate  from X1  and new sample, (X2 + θ̂ ). 
4.	 Generate bootstrap samples from X1 and (X2 + θ̂ )  

yielding X*
1 and X*

2.
5.	 Calculate W* from the bootstrap samples.
6.	 Calculate (W* – ).
7.	 Repeat step 4 and step 6 for B times. B = 599 appears 

sufficient in most situations when n ≥ 12 (Wilcox 
2005).

8.	 Compare the value of (W* – ) with (W – E(W|H0))

where E(W|H0) = . Let  U = (W* – )  > 

(W – E(W|H0)) and L = (W* – ) < (W – E(W|H0)).  

9.

	 		
10.	 Calculate the number of times U = L = 1. 
11.	 Calculate the p-value as minimum (number of L, 

number of U) 

	 To obtain the power rate for each procedure, the first 
step is to determine the effect size (0.2, 0.4, 0.6,…, 2.0) and 
induced the effect size to all members of the first sample, 
X1. Then, continue all the steps as listed in Algorithm 1 
and Algorithm 2.

RESULTS AND DISCUSSION

This study used the Bradley’s (1978) liberal criterion 
of robustness to assess the performance of a statistical 
test to control its probability of Type I error. According 
to Bradley’s liberal criterion of robustness, a test can be 
considered robust if its empirical rate of Type I error is 
within the interval [0.5α, 1.5α]. Thus, when the nominal 
level is set at α = 0.05, the procedure or test is considered 
robust if its’ Type I error rate is between 0.025 and 0.075. 
Type I error rates greater than 0.075 are considered liberal 
and those less than 0.025 are considered conservative. 
	 The simulation results of Type I error rates under 
various combinations of group sizes, group variances and 
types of distribution are presented in Table 1. The results 
from Table 1 show that all Type I error rates are robust 
and within the Bradley’s liberal criterion of robustness 
for pseudo-median procedure and t-test. Type I error 

TABLE 1. Type I error rates for all procedures under various combinations of study conditions

Procedure Distribution
(20,20) (15,25)

(1:1) (1:16) (1:36) (1:1) (1:16)
+ve

(16:1)
-ve

(1:36)
+ve

(36:1)
-ve

PM
Normal 0.0552 0.053 0.049 0.0526 0.0468 0.0508 0.0486 0.0492

Beta 0.046 0.0376 0.0348 0.0528 0.0394 0.0402 0.0358 0.0376

Fleishman 0.0456 0.046 0.0462 0.0528 0.047 0.0572 0.0462 0.0486

t-test
Normal 0.054 0.0532 0.052 0.054 0.0486 0.0508 0.0492 0.0514
Beta 0.0536 0.0544 0.0544 0.0562 0.051 0.0582 0.0524 0.06
Fleishman 0.052 0.0536 0.054 0.0532 0.0498 0.056 0.0502 0.0574

MWW
Normal 0.0516 0.079 0.0912 0.0456 0.0408 0.1142 0.0458 0.1142
Beta 0.0546 0.087 0.0918 0.0492 0.0446 0.1326 0.0474 0.141
Fleishman 0.0508 0.0976 0.1082 0.0458 0.0594 0.127 0.0614 0.139

Bold values indicate Type I error within [0.025, 0.075]
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rates of Mann-Whitney-Wilcoxon test are liberal under 
conditions of equal sample sizes with heterogeneous 
variances and unequal sample sizes with negative pairing. 
All procedures resulted in greater Type I error rates for 
negative pairing compared with positive pairing regardless 
of the distributions. 
	 There are no formal standards for power. In 
determining desired levels of power, most researchers 
assess the power of their tests using 0.80 as a standard 
for adequacy. According to Murphy and Myors (2004), 
power of 0.80 or above is usually judged to be adequate. 
Therefore, in this study, 0.80 was used as the benchmark 
for standard adequacy or the desired level of power to be 
achieved. The results for power analysis were reported 
only for conditions which have robust Type I error 
rates. 
	 Tables 2 and 3 display the power rates for all procedures 
with equal sample sizes and unequal sample sizes, 
respectively. As can be observed from all distributions, 
the pseudo-median procedure and the t-test are capable of 

reaching the 0.80 benchmark only when variances were 
homogeneous between shift parameter values of 0.8 and 
1.0. The power rates for all procedures are vulnerable to 
variance heterogeneity. Tables 2 and 3 reveal that for both 
sample sizes, pairing them with heterogeneous variances 
resulted in depressed statistical power rates. From Table 
3, we can also observe that positive pairing led to greater 
power rates compared with negative pairing for all 
procedures and distributions. 

CONCLUSION

When comparing the differences between two groups, 
instead of using the classical t-test (either Student’s t-test 
or Welch’s t-test), one can used pseudo-median procedure 
since this procedure can be applied for both variance 
conditions i.e. equal or unequal. The findings from this 
study revealed that the pseudo-median procedure performs 
very well in controlling Type I error rates close to the 
nominal value. The pseudo-median procedure outperforms 

TABLE 2. Power rates for all procedures with equal sample sizes (20,20)

Procedure PM t-test MWW

Variances (1:1) (1:16) (1:36) (1:1) (1:16) (1:36) (1:1) (1:16) (1:36)

N
or

m
al

Sh
ift

 P
ar

am
et

er

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.095
0.231
0.450
0.681
0.860
0.956
0.990
0.998
1.000
1.000

0 . 0 5 6 6 
0 . 0 6 7 4 
0 . 0 9 6 8 
0 . 1 3 1 4 
0 . 1 6 8 0 
0 . 2 2 7 6 
0 . 2 8 7 0 
0 . 3 7 9 2 
0 . 4 5 3 4 
0.5182

0.051
0.054
0.069
0.089
0.104
0.126
0.149
0.199
0.235
0.267

0.099
0.236
0.460
0.696
0.866
0.962
0.991
0.998
1.000
1.000

0 . 0 5 8 4 
0 . 0 7 0 2 
0 . 1 0 0 6 
0 . 1 4 2 8 
0 . 1 7 6 8 
0 . 2 4 0 4 
0 . 3 0 0 4 
0 . 3 9 6 0 
0 . 4 6 8 2 
0.5412

0.056
0.058
0.075
0.091
0.109
0.135
0.159
0.213
0.246
0.282

0.091
0.223
0.442
0.672
0.845
0.954
0.987
0.997
1.000
1.000

N
ot

 re
po

rte
d

N
ot

 re
po

rte
d

B
et

a

Sh
ift

 P
ar

am
et

er

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.085
0.195
0.406
0.649
0.835
0.959
0.991
0.998
1.000
1.000

0 . 0 4 2 0 
0 . 0 5 3 2 
0 . 0 7 3 2 
0 . 1 1 3 0 
0 . 1 4 3 6 
0 . 1 9 1 8 
0 . 2 6 6 6 
0 . 3 2 4 0 
0 . 4 0 2 2 
0.4800

0.037
0.045
0.054
0.075
0.082
0.108
0.144
0.161
0.203
0.245

0.097
0.214
0.445
0.699
0.870
0.968
0.993
0.998
1.000
1.000

0 . 0 5 7 0 
0 . 0 6 8 6 
0 . 0 9 1 6 
0 . 1 3 7 6 
0 . 1 7 2 4 
0 . 2 2 0 8 
0 . 2 9 1 6 
0 . 3 5 3 0 
0 . 4 3 9 0 
0.5346

0.055
0.061
0.072
0.093
0.099
0.128
0.161
0.181
0.219
0.263

0.124
0.263
0.467
0.666
0.804
0.913
0.960
0.986
0.998
0.999

N
ot

 re
po

rte
d

N
ot

 re
po

rte
d

Fl
ei

sh
m

an

Sh
ift

 P
ar

am
et

er

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.091
0.219
0.436
0.673
0.854
0.954
0.989
0.999
0.999
1.000

0 . 0 5 3 2 
0 . 0 5 7 6 
0 . 0 8 2 2 
0 . 1 0 7 2 
0 . 1 4 9 2 
0 . 1 9 3 2 
0 . 2 3 5 2 
0 . 3 0 1 6 
0 . 3 6 6 8 
0.4420

0.049
0.048
0.061
0.066
0.095
0.109
0.126
0.160
0.189
0.224

0.093
0.236
0.462
0.698
0.869
0.963
0.992
0.997
1.000
1.000

0 . 0 6 4 0 
0 . 0 8 8 6 
0 . 1 2 2 0 
0 . 1 6 0 8 
0 . 1 9 8 8 
0 . 2 6 0 8 
0 . 3 1 7 8 
0 . 4 0 2 2 
0 . 4 6 7 6 
0.5316

0.060
0.074
0.090
0.108
0.128
0.155
0.177
0.230
0.262
0.299

0.093
0.228
0.446
0.669
0.838
0.949
0.984
0.995
1.000
1.000

N
ot

 re
po

rte
d

N
ot

 re
po

rte
d

Bold values indicate power rate ≥ 0.80
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the Mann-Whitney-Wilcoxon test and was comparable 
to the t-test in controlling Type I error and maintaining 
adequate power. 
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